Analytics to Support Business Decision in Traditional Industry

25 May 2014 7th R conference (Beijing, China)

² Traditional Industry v.s. E-commerce Industry

- ≻ NOT big data
- Different time series
- > Well defined concentration
- ➤ Relationship: Rep Sales play a role
- > Without/little online purchasing data
- > Machine learning and statistical model
- > Market research based on questionnaire
- > Time of the year matters (for agriculture)

³ How Analytics Can Help

- > Business Opportunities
 - Cross-selling
 - Evaluate marketing campaign
 - Target specific population (segmentation)
 - R.O.I of different marketing program and services
 - Understand customer attrition/conversion/retention
 - Predict possible customer reaction before decision implementation
 - •

⁴ Not Academic

- ≻ Dirty data
- > Useful v.s. Accurate
- > Issues of observational study
 - Hard to define control group
 - Missing value
 - Correlation? Causality?

> Gap between "Implication" and "Implementation"

Scoring System for Customer Retention

- Objective: score customers by the likelihood of retention
- Response: 0/1
- Predictors: categorical, continuous (different scales, all possible historical transactional records)
- Data Size: 10000 x 200

⁶ 50,000 random t variates, 200 d.f.

Anderson-Darling normality test A = 0.1731, p-value = 0.9281

⁷ 50,000 random t variates, 200 d.f.

A = 0.1731, p-value = 0.9281

⁸ 5,000 random t variates, 200 d.f.

[°]500 random t variates, 200 d.f.

Anderson-Darling normality test A = 0.2427, p-value = 0.7672

¹⁰ 50 random t variates, 200 d.f.

A = 0.2845, p-value = 0.6156

¹¹ Equal p-values are not all equal

Study 1: Non-meaningful difference, precisely measured.
Study 2: Moderate difference, moderate accuracy.
Study 3: Important difference, poorly measured.
P-values collapse two-dimensional data (mean/sd) down to one dimension

http://www.johnmyleswhite.com/notebook/2012/05/14/criticism-3-of-nhst-essential-information-is-lost-when-transforming-2d-data-into-a-1d-measure/

² A Simulation Study

- 800 farms (i.e. n=800) and 120 survey questions (i.e. G=120) in each dataset
- i^{th} farm is generated from a $Bernoulli(1, p_i)$
- $ln(\frac{p_i}{1-p_i}) = \beta_0 + \sum_{g=1}^G \mathbf{x_{i,g}^T} \beta_g$, where β_0 is the intercept, $\mathbf{x_{i,g}}$ is a three dimentional indication vector for question answer and β_g
- $\gamma=0.1, 0.25, 0.5, 1$ and 2 and $\beta_0=-rac{40}{3}\gamma$

$$\beta_{\mathbf{g}} = (1, 0, -1) \times \gamma, g = 1, ..., 40,$$

$$\beta_{\mathbf{g}} = (1, 0, 0) \times \gamma, g = 41, ..., 80.$$

$$\beta_{\mathbf{g}} = (0, 0, 0) \times \gamma, g = 81, \dots, 120.$$

Simulation study result with various values of coefficient γ . Reported are mean and standard deviation of AUC for both methods and mean difference

Coefficient γ	Group Lasso (mean±sd)	Logistic Regression (mean±sd)
0.1	0.57 ± 0.03	0.54 ± 0.06
0.25	0.71 ± 0.02	0.64 ± 0.04
0.5	0.91 ± 0.03	0.78 ± 0.03
1	0.92 ± 0.01	0.82 ± 0.02
2	0.95 ± 0.01	0.84 ± 0.02

¹⁴ Challenges

- Communication
- Approve or change
- 360 degree data
- "Small p" and "Big n"
- Actionable questions
- Short term v.s long term
- Development to implementation

¹⁵ Iowa State

Snedecor Hall

Statistics Department Statistical Laboratory Center for Survey Statistics and Methodology

¹⁶ **DuPont Pioneer** Pioneer employs statisticians!

¹⁷ DuPont Pioneer

谢谢! Thank you!