
Hadley Wickham  
@hadleywickham
Chief Scientist, RStudio

Packages  
are easy!

May 2014

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

A package is a set of
conventions that

(with the right tools)
makes your life easier

A package is a set of
conventions that

(with the right tools)
makes your life easier

The right tools:

The latest version of R.
RStudio.

Code development tools:

* Windows: Rtools, download installer from
http://cran.r-project.org/bin/windows/Rtools/
* OS X: xcode, free from the app store
* Linux: apt-get install r-base-dev (or similar)

Packages that make your life easier:
install.packages(c("devtools", "knitr", "Rcpp",
 "roxygen2", "testthat"))

http://cran.r-project.org/bin/windows/Rtools/

A package is a set of
conventions that

(with the right tools)
makes your life easier

R/
R code

devtools::create("easy")
Creates DESCRIPTION
Creates rstudio project
Sets up R/ directory
!
NB: All devtools functions take a path to a
package as the first argument. If not supplied,
uses the current directory.

Never use
package.skeleton()!

Why? It only works once, it does
something v. easy to do by hand, and

automates a job that needs to be manual

Add some R code
!
load_all()
!
In rstudio: cmd + shift + l
Also automatically saves all files for you

Modify and
save code

Reload in R

Does it work?

Identify the
task

Write an
automated testYES

NO

Programming cycle

Document

Reloads changed code, data, …
cmd + shift + l
load_all()
!
Rstudio: Build & Reload
cmd + shift + b
Installs, restarts R, reloads
!
Builds & installs
install()
(needed for vignettes)

More
accurate

Faster

DESCRIPTION
Who can use it, what it needs, and who wrote it

+

Package: easy
Title: What the package does (short line)
Version: 0.1
Authors@R: "First Last <first.last@example.com> [aut, cre]"
Description: What the package does (paragraph)
Depends: R (>= 3.1.0)
License: What license is it under?
LazyData: true

We’re done!

!

That’s all you need to know
about packages

!

But you can also add data,
documentation, unit tests,
vignettes and C++ code

man/
Compiled documentation

+

Roxygen2

• Essential for function level
documentation. Huge time saver

• R comments → Rd files → human
readable documentation

• Rd2roxygen package converts Rd to
roxygen if you have legacy packages

#' Order a data frame by its columns.
#'
#' This function completes the subsetting, transforming and ordering triad
#' with a function that works in a similar way to \code{\link{subset}} and
#' \code{\link{transform}} but for reordering a data frame by its columns.
#' This saves a lot of typing!
#'
#' @param df data frame to reorder
#' @param ... expressions evaluated in the context of \code{df} and
#' then fed to \code{\link{order}}
#' @keywords manip
#' @export
#' @examples
#' mtcars[with(mtcars, order(cyl, disp)),]
#' arrange(mtcars, cyl, disp)
#' arrange(mtcars, cyl, desc(disp))
arrange <- function(df, ...) {
 ord <- eval(substitute(order(...)), df, parent.frame())
 unrowname(df[ord,])
}

Raw R
source

#' Order a data frame by its columns.
#'
#' This function completes the subsetting, transforming and ordering triad
#' with a function that works in a similar way to \code{\link{subset}} and
#' \code{\link{transform}} but for reordering a data frame by its columns.
#' This saves a lot of typing!
#'
#' @param df data frame to reorder
#' @param ... expressions evaluated in the context of \code{df} and
#' then fed to \code{\link{order}}
#' @keywords manip
#' @export
#' @examples
#' mtcars[with(mtcars, order(cyl, disp)),]
#' arrange(mtcars, cyl, disp)
#' arrange(mtcars, cyl, desc(disp))
arrange <- function(df, ...) {
 ord <- eval(substitute(order(...)), df, parent.frame())
 unrowname(df[ord,])
}

Raw R
source

\name{arrange}
\alias{arrange}
\title{Order a data frame by its columns.}
\usage{arrange(df, ...)}
!
\description{
 Order a data frame by its columns.
}
!
\details{
 This function completes the subsetting, transforming and
 ordering triad with a function that works in a similar
 way to \code{\link{subset}} and \code{\link{transform}}
 but for reordering a data frame by its columns. This
 saves a lot of typing!
}
\keyword{manip}
\arguments{
 \item{df}{data frame to reorder}
 \item{...}{expressions evaluated in the context of \code{df} and then fed
to \code{\link{order}}}
}
\examples{mtcars[with(mtcars, order(cyl, disp)),]
arrange(mtcars, cyl, disp)
arrange(mtcars, cyl, desc(disp))}

Generated
Rd file

Html view  
in R

Documentation cycle

1. Update roxygen comments.

2. document() (Cmd + Shift + D)

3. ?topic

vignettes/
Long-form documentation

+

markdown + knitr

Easy to write

Doesn’t need latex toolchain

Only available ≥3.0.0

By Yihui Xie

use_knitr()
!
Adds to DESCRIPTION
VignetteBuilder: knitr
Suggests: knitr
!
In each .Rmd file in vignettes/
<!--
%\VignetteEngine{knitr}
%\VignetteIndexEntry{Vignette title}
-->

<!--
%\VignetteEngine{knitr}
%\VignetteIndexEntry{Vignette title}
-->
!
Introduction to my package
!
The easy package provides a number of simple functions that make it easy to
access small integers.
!
For example the `one()` function returns the number one:
!
```{r} 
library(easy2) 
one() 
``` 
!
Or in a plot:
!
```{r} 
plot(one()) 
```


Preview with cmd + shift + k (knitr)
Vignette runs in separate (clean) session,
so make sure to build & reload first.
!
To check actually built in package, use
install().
install()
browseVignettes(package = "easy")

src/
C++ code

+

Rcpp
• Don’t have time to talk about it today, but

if you’re interesting in writing fast code,
learn Rcpp!

• Get set up with use_rcpp()

• My guide at http://adv-r.had.co.nz/
Rcpp.html

• By Dirk Eddelbuettel, Romain Francois,
and others

http://adv-r.had.co.nz/Rcpp.html

inst/tests/
Unit tests

+

testthat
• Likewise, no time to talk about unit

testing, but it’s a great way to prevent
bugs.

• You are already doing testing, learn how
to make it formal.

• Get setup with use_testthat()

• My guide at adv-r.had.co.nz/Testing.html

http://adv-r.had.co.nz/Testing.html

Test cycle

1. Update code.

2. Update tests.

3. test() (Cmd + Shift + t)

NAMESPACE
what functions your package needs, and  

what functions it provides

+

Motivation

• What happens if two packages both
have a function with the same name?

• Namespaces provide a way to resolve
this issue, and to reduce it.

• Splits functions into internal and
external

library(plyr)
library(Hmisc)
is.discrete
!
library(Hmisc)
library(plyr)
is.discrete
!
Hmisc::is.discrete
plyr::is.discrete

Note

• Mostly important for CRAN: be a  
good neighbour to other packages.

• You need to know about it, but it’s a bit
tricky.

• Roxygen2 makes it relatively easy with
@export and @importFrom

To use a function from another package:
!
Add package name (and version) to DESCRIPTION
Imports: ggplot2 (>= 0.9.3)
!
Add @importFrom directive next to function
#' @importFrom ggplot2 ggplot
!
Or import all functions from a package with
#' @import ggplot2

To export a function from your package use
#' @export
!
!
By default load_all() makes all functions
available, even if not exported. Use
load_all(export_all = FALSE) to only reveal
exported functions. This is useful for testing.

Never use depends!

Why? Because it exposes many extra
functions to the user, massively increasing

the chances of clashes

...
More to learn

+

Learn from others
Read the source code of other packages.

These are the packages I’m most proud of:

https://github.com/hadley/plyr

https://github.com/hadley/stringr

https://github.com/hadley/devtools

https://github.com/hadley/lubridate

https://github.com/hadley/evaluate

https://github.com/hadley/reshape

If you only

remember one

thing:

https://github.com/hadley/plyr
https://github.com/hadley/stringr
https://github.com/hadley/devtools
https://github.com/hadley/lubridate
https://github.com/hadley/evaluate

Distribution

• Easiest way: put on github and use
devtools::install_github() to install

• Most rigorous (and painful): put on
CRAN. See check() and release() for
more details

devtools

• devtools is constantly improving as I
figure out where the pain points are

• Use install_github("devtools") to
get the latest version

• If something doesn’t work for you,
please file a bug at  
github.com/hadley/devtools/issues

https://github.com/hadley/devtools/issues

