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An Example: Chinese Character Recognition

Each grid corresponds to
a feature. X,=0
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An Example: Ten Chinese Characters
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relevant features are marked in red
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An Example: Pairwise Comparison
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Introduction: Linear Discriminant Analysis (LDA)

@ Categorical response (class label) Y = 1,2 with equal prior

probability, and continuous predictors (features) X € RP
@ Given the class label k (k =1,2), X ~ Np(uk, ¥)
@ LDA Rule

{Xo — (1 + p2)/2} "= (u1 — p2) > 0, (1)
which can be estimated by

{Xo— (1 + fi2)/2} 'S (i — fi2) > 0 (2)
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Ultrahigh Dimensional LDA: Literature Review

{Xo — (1 + i) /2} TS (g — fo2) > O

@ Bickel and Levina (2004):

Independence Classification Rule, D = diag(%)

@ Fan and Fan (2008):

Feature Annealed Independence Rule
@ Shao et al. (2011): Sparse LDA

@ Mai et al. (2012): Direct Approach
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Introduction: Two Challenges

@ Challenge One: LDA with high-dimensional predictors,

p — o0

@ Challenge Two: LDA with a diverging number of classes,

K — oo

@ Solution: Pairwise Feature Screening Method
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Introduction: Contributions

Major Contributions:

(a) We propose to decompose the ultrahigh dimensional
LDA problem with a diverging number of classes into many low
dimensional ones.

(b) We propose a new pairwise feature screening of LDA,
and establish the strong screening consistency of the proposed

procedure.
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Pairwise LDA: Notation

Let (Y;, X;) be the observation collected from the ith
(1 < i < n) subject.

Yi € {1,2,---, K} with probability P(Y; = k) = m, > 0,
where 7, = 1/K for simplicity.

Xi = (Xin, -+, Xjp) " € RPis the associated feature.
Conditional on Y; = k, X; follows a multivariate normal
distribution with mean px = (pu1, -, pp) T € RP and

covariance ¥ = (oj,j,) € RP*P.
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Pairwise LDA: Pairwise Comparison

@ Let (Yp, Xo) be an independent observation. Suppose Xj is

known and we want to predict Yj.

© {Xo — (u1 +p2)/2}TZ 7 (11 — p2) > 0.
@ For any pair (kq, ko) with 1 < ky # ko < K, k* can be

equivalently defined as

K* = argmaxyy,<x 3 /({XO*(Mkﬁukz)/z}Tﬁmkz > 0>,
ko#kq

where Bik, = (Brko1s s Brikop) T = T 1tk — fiy) € RP.
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Pairwise LDA: Pairwise Screening

Define the notation My, x, = {j : Bk,k,; 7 0} to collect
those indices associated with nonzero coefficients, and | M, g, |
the size of My, ,-

Accordingly, the original classification function can be

re-written as k* = argmax,, > . .,

-
/<{X0(Mk1k2) - (/‘Lk1 (Mk1k2) + Mkz(Mk1k2))/2} I8k1k2(Mk1k2) > 0) )

where Xo(Mk1k2) = (Xoj 1 J € Miyi,) " € RM#kl is the subvector

of Xp according to M, ,.
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Pairwise LDA: Screening Method

Write ﬁ;ﬁ ko = 2_1’)/;(1 ko with Yiiko = kg — Mk And then
investigate Yk, k, = fik, — fik,,» Where fuc = n.' 3, Xil(Y; = k)
and ng = >, I(Y; = k). For a given constant c,x,, we then

estimate My, x, by

Mk, = {/1 k| > Ck1k2}-
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Theoretical Properties: Conditions

(C1) (Pairwise Sparsity ) Assume that for any 1 < ky, ko < K,
1 < [My k| < Smax, Where smay is a fixed positive constant.
(C2) (Coefficient Regularity) (a) Assume that there exist finite
positive constants Bmin, Smax such that
Brin < MiNk o MiNje o 1Bkl <
MaXg, k, MaXjept,, | Bk ko,jl < Bmax- (b) Furthermore,
assume that there exists a constant vymin > 0 such that

MiNg, K, MiNje Ay, [Vhikojl > Fmin-
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Theoretical Properties: Conditions

(C3) (Covariance Matrix) Assume that
0 < Tmin < Amin(Z) < Amax(X) < Tmax < oo for some
positive constants min and Tmax, Where Ayin(A) and
Amax(A) are the smallest and largest absolute eigenvalues
of a symmetric matrix A.

(C4) (Divergence Speed) (a) Assume that log p < v4n¢ for
some constant vy > 0 and 0 < &; < 1; (b) Furthermore, we
assume that the number of classes K < von® for some

constants v, > 0and 0 < & < 1 with & + & < 1.
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Theoretical Properties: Strong Screening Consistency

Under Conditions (C1) to (C4), as n — oo, there exists a set of

constants ¢, x, for every 1 < ky, ko < K, such that
P( Mgk > Migk, forevery 1 < ki ke < K) = 1,

P(Tax|/\/lk1k2| < mmax) — 1,
17

where Mmax = 167’max3max5max7m.n
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Post Screening Estimation: Notation

Biks = (Brykpj 1 <Jj < p)T € RP can be obtained as,
® Bk, =0forany j ¢ My ks

0 By = Bekey J€ M) =571 5 o
’8k1k2(Mk1k2) (/Blﬁkz,j fEM/qu) Z(Mk1k2)’yk1k2(Mk1k2)-
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Post Screening Estimation: Theorem 2

Assume (C1) to (C4), as n — oo, then

MaX, k, || Bk k, — Briko || = 0p(1)-
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Post Screening Estimation: Prediction

k* = argmax, >k, 4k,

-
l({XO(Mk1k2) — (b (Mygiy) T MKZ(Mk1k2))/2} /8k1k2(Mk1k2) > 0> )

For a new observation Xy, we can predict Yy by

~

k = argmax;, >y, sk,

T .
/<{X0(M\k1k2) B (Mk1(/‘7k1k2) + Mkz(ﬂk1k2))/2} ’8k1kz(ﬂk1k2) - 0>'
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Tuning Parameter Selection

Mk, = {fi Yk koo | > Ck1k2}

Follow Mai et al. (2012), we construct a least squares objective
function Qi k, = El(Yiykei — Brikeo — By, Xi)?1 Vi € {k1, e},
where Yk1k2,i is defined as /(Y, = /(1)/7‘(';(1 — ( i = kg)/ﬂ'kz.

Information criteria,

AIC = log Quk, +2 X M [ Mgk,
BIC = log CADMZ + 109 Ny, K, % n,;1,(2|/\/lk1k2|,
EBIC = log Qkk, + (log nkx, +2logp) x 17;11,(2\/\/1k1k2!-
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Simulation Study: 4 Models

1 2 3 K-1 K K+1 p
1 0 0 o 0 0 0
2 [0 p O 0o 0 0 0
3 |0 0 pu 0o 0 0 0

K-1/0 0 0 0 o0 0
K |[000 - 0 4 0 -0

Remark: My x, = {ki, k2} and My x| = 2.
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Example 1. (Independent Covariance Structure) Generate

Yie {1,---,K} according to P(Y; = k) = 1/K. Given Y, = k,
Xi is generated from a multivariate normal distribution with
E(Xi|Y; = k) = jux, where pic = (pk1, -+, inp) | € RPis @
p-dimensional vector with pux, = p but gk, = 0 for any ky # ko.
Furthermore, the conditional covariance is given by

cov(Xj|Y; = k) = X = |,, where I, is a p x p identity matrix. It is
easily verified that My, x, = {ki, ko}, and thus

Mr=UMk, =1{/:1 << K}
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Example 2. (Autoregressive Covariance Structure) The data
are generated in a similar manner as Example 1 but with two
differences. The first difference is that X is set to

0j,j, = 0.5U1%l. Note that == = (w;,;,) € RP*P is very sparse
with wiy = wpp = 4/3, wj; =5/3for 1 < j < p,

Wi(j+1) = W(j+1)j = —2/3 for 1 < j < p, and w,;, = 0 whenever
lj1 — jo| > 1. The second difference is that the mean vector p is
set be ik = pXx k), where X4 stands for the kth column vector
of . Accordingly, it follows that My, x, = {k1, k2} with
Mr=UMk =1{/,1 <j< K}
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Example 3. (Compound Symmetric Covariance Structure) The
data are generated in a similar manner as in Example 1.
However, the covariance is changed to

aj,, = 0.5+ 0.5/(j; = J2), which is a compound symmetric
structure with diagonal components being 1 but all others being
0.5. One can verify that My, = {ki, ko} with

Mt ={j:1<j<K}. Furthermore, we know that the largest
eigenvalue of X is Amax(X) = 0.5(p + 1) while the smallest is
Amin(X) = 0.5. Consequently, the technical condition (C3) is
seriously violated. It is then of great interest to examine how

the proposed procedure is sensitive to this violation.
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Example 4. (Normality Assumption) Y; € {1,--- K} is
generated according to P(Y; = k) = 1/K. Given Y; = k, we
then generate the predictors as X; = px/(Y; = k) + Z;, where
pik = (pk1s -+ 5 ikp) | € RP With puge = g1 out puy 4, = 0 for every
ki # ko. Furthermore, the random vector Z; € RP is generated
as Zj = (Zu, -+ ,Zp)' € RP with each Z; independently
simulated from a centralized standard exponential distribution,
that is exp(1) — 1. Once again, we have My, x, = {ki, ko} and
Mr={:1<j<K}.
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Table 1: Simulation Results for Model 1 with 1,000 Replications

Signal CA(%)
Criterion g (n, K) ng | MS  MMS ) 1Z(%) MRSSE | k k*  RCA(%)
EBIC 3 (100.10) 1010 1.2 100.0 485 4.0 90.3 79.9
(400,20) 20|13 1.5 100.0 340 3.3 BLT TT.T
(1600,40) 40|19 2.0 1000 32 97.3
5 (100,10) 1011 1.2 100.0 456 87 0.0 97.5
(400,20) 20|15 1.7 100.0 233 53.3 0.0 97.8
(1600,40) 40]2.0 2.0 100.0 08 98.4 0.0 99.9
AIC 3 (100,10) 10|43 7.4 1000 21 96.1 36.1 89.3
(400,20) 20]9.2 123 | 999 0.0 100.0 98.9 80.2
(1600,40) 40 | 204 24.9 | 99.8 0.0 100.0 100.0 90.0
5 (100,10) 10 |3.6 6.0 1000 08 98.5 54.8 99.6
(400.20) 20]6.8 9.5 100.0 0.0 100.0 96.9 99.6
(1600,40) 40 | 126 159 |99.9 0.0 100.0 100.0 99.6
BIC 3 (100,10) 10|37 6.0 1000 31 4.0 16.1 90.3
(400,20) 20|5.0 64 1000 0.1 99.8 69.7 93.3
(1600,40) 40 | 4.0 4.5 1000 0.0 100.0 99.5 98.2
5 (100,10) 10 |3.0 4.4 100.0 1.6 96.7 26.0 3.1 7.6 99.7
(400,20) 20)3.1 38 1000 0.1 99.9 75.0 L5 5.4 99.9
(1600,40) 40|25 2.6 100.0 0.0 100.0 99.8 0.7 3.3 99.5 99.4 100.1




Real Example: Handwritten Chinese Characters

7L\ f\ /\ %\ f\

Figure: The Ten Handwritten Characters used for Real Data Analysis
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Table: Detailed Results for the Real Example

Total No. of
Method MS MMS selected features CA(%)
AIC 19.6 30.0 222.9 70.4
BIC 75 26.8 112.8 67.2
EBIC 1.3 3.4 32.2 58.4
NM 625 625 625 46.1
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Concluding Remarks

@ Pairwise Feature Screening
@ Strong Screening Consistency Property

@ Future Study
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