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An Example: Chinese Character Recognition
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An Example: Ten Chinese Characters
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An Example: Pairwise Comparison

Pan, Wang and Li R Conference, 2013



Introduction: Linear Discriminant Analysis (LDA)

Categorical response (class label) Y = 1,2 with equal prior

probability, and continuous predictors (features) X ∈ Rp

Given the class label k (k = 1,2), X ∼ Np(µk ,Σ)

LDA Rule

{X0 − (µ1 + µ2)/2}>Σ−1(µ1 − µ2) > 0, (1)

which can be estimated by

{X0 − (µ̂1 + µ̂2)/2}>Σ̂−1(µ̂1 − µ̂2) > 0 (2)
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Ultrahigh Dimensional LDA: Literature Review

{X0 − (µ̂1 + µ̂2)/2}>Σ̂−1(µ̂1 − µ̂2) > 0

Bickel and Levina (2004):

Independence Classification Rule, D̂ = diag(Σ̂)

Fan and Fan (2008):

Feature Annealed Independence Rule

Shao et al. (2011): Sparse LDA

Mai et al. (2012): Direct Approach
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Introduction: Two Challenges

Challenge One: LDA with high-dimensional predictors,

p →∞

Challenge Two: LDA with a diverging number of classes,

K →∞

Solution: Pairwise Feature Screening Method
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Introduction: Contributions

Major Contributions:

(a) We propose to decompose the ultrahigh dimensional

LDA problem with a diverging number of classes into many low

dimensional ones.

(b) We propose a new pairwise feature screening of LDA,

and establish the strong screening consistency of the proposed

procedure.
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Pairwise LDA: Notation

Let (Yi ,Xi) be the observation collected from the i th

(1 ≤ i ≤ n) subject.

Yi ∈ {1,2, · · · ,K} with probability P(Yi = k) = πk > 0,

where πk = 1/K for simplicity.

Xi = (Xi1, · · · ,Xip)> ∈ Rp is the associated feature.

Conditional on Yi = k , Xi follows a multivariate normal

distribution with mean µk = (µk1, · · · , µkp)> ∈ Rp and

covariance Σ = (σj1j2) ∈ Rp×p.
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Pairwise LDA: Pairwise Comparison

Let (Y0,X0) be an independent observation. Suppose X0 is

known and we want to predict Y0.

{X0 − (µ1 + µ2)/2}>Σ−1(µ1 − µ2) > 0.

For any pair (k1, k2) with 1 ≤ k1 6= k2 ≤ K , k∗ can be

equivalently defined as

k∗ = argmax1≤k1≤K

∑
k2 6=k1

I
({

X0−(µk1 +µk2)/2
}>

βk1k2 > 0
)
,

where βk1k2 = (βk1k2,1, · · · , βk1k2,p)> = Σ−1(µk1 − µk2) ∈ Rp.
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Pairwise LDA: Pairwise Screening

Define the notationMk1k2 = {j : βk1k2,j 6= 0} to collect

those indices associated with nonzero coefficients, and |Mk1k2 |

the size ofMk1k2 .

Accordingly, the original classification function can be

re-written as k∗ = argmaxk1

∑
k1 6=k2

I

({
X0(Mk1k2

) − (µk1(Mk1k2
) + µk2(Mk1k2

))/2
}>

βk1k2(Mk1k2
) > 0

)
,

where X0(Mk1k2
) = (X0j : j ∈Mk1k2)> ∈ R|Mk1k2

| is the subvector

of X0 according toMk1k2 .
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Pairwise LDA: Screening Method

Write βk1k2 = Σ−1γk1k2 with γk1k2 = µk1 − µk2 . And then

investigate γ̂k1k2 = µ̂k1 − µ̂k2 , where µ̂k = n−1
k
∑

i Xi I(Yi = k)

and nk =
∑

i I(Yi = k). For a given constant ck1k2 , we then

estimateMk1k2 by

M̂k1k2 =
{

j : |γ̂k1k2,j | > ck1k2

}
.
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Theoretical Properties: Conditions

(C1) (Pairwise Sparsity ) Assume that for any 1 ≤ k1, k2 ≤ K ,

1 ≤ |Mk1k2 | ≤ smax, where smax is a fixed positive constant.

(C2) (Coefficient Regularity) (a) Assume that there exist finite

positive constants βmin, βmax such that

βmin < mink1,k2 minj∈Mk1k2
|βk1k2,j | ≤

maxk1,k2 maxj∈Mk1k2
|βk1k2,j | < βmax. (b) Furthermore,

assume that there exists a constant γmin > 0 such that

mink1,k2 minj∈Mk1k2
|γk1k2,j | > γmin.
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Theoretical Properties: Conditions

(C3) (Covariance Matrix) Assume that

0 < τmin < λmin(Σ) ≤ λmax(Σ) < τmax <∞ for some

positive constants τmin and τmax, where λmin(A) and

λmax(A) are the smallest and largest absolute eigenvalues

of a symmetric matrix A.

(C4) (Divergence Speed) (a) Assume that log p ≤ ν1nξ1 for

some constant ν1 > 0 and 0 < ξ1 < 1; (b) Furthermore, we

assume that the number of classes K ≤ ν2nξ2 for some

constants ν2 > 0 and 0 < ξ2 < 1 with ξ1 + ξ2 < 1.
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Theoretical Properties: Strong Screening Consistency

Theorem
Under Conditions (C1) to (C4), as n→∞, there exists a set of

constants ck1k2 for every 1 ≤ k1, k2 ≤ K , such that

P
(
M̂k1k2 ⊃Mk1k2 for every 1 ≤ k1, k2 ≤ K

)
→ 1,

P
(

max
k1,k2
|M̂k1k2 | ≤ mmax

)
→ 1,

where mmax = 16τ2
maxsmaxβ

2
maxγ

−2
min.
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Post Screening Estimation: Notation

β̂k1k2 = (β̂k1k2,j : 1 ≤ j ≤ p)> ∈ Rp can be obtained as,

β̂k1k2,j = 0 for any j 6∈ M̂k1k2 ,

β̂k1k2(M̂k1k2
)

= (β̂k1k2,j : j ∈ M̂k1k2)> = Σ̂−1
(M̂k1k2

)
γ̂k1k2(M̂k1k2

)
.
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Post Screening Estimation: Theorem 2

Theorem
Assume (C1) to (C4), as n→∞, then

maxk1k2 ‖β̂k1k2 − βk1k2‖ = op(1).
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Post Screening Estimation: Prediction

k∗ = argmaxk1

∑
k1 6=k2

I

({
X0(Mk1k2

) − (µk1(Mk1k2
) + µk2(Mk1k2

))/2
}>

βk1k2(Mk1k2
) > 0

)
,

For a new observation X0, we can predict Y0 by

k̂ = argmaxk1

∑
k2 6=k1

I

({
X0(M̂k1k2

)
− (µ̂k1(M̂k1k2

)
+ µ̂k2(M̂k1k2

)
)/2
}>

β̂k1k2(M̂k1k2
)
> 0

)
.
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Tuning Parameter Selection

M̂k1k2 =
{

j : |γ̂k1k2,j | > ck1k2

}
Follow Mai et al. (2012), we construct a least squares objective

function Qk1k2 = E [(Yk1k2,i − βk1k20 − β>k1k2
Xi)

2|Yi ∈ {k1, k2}],

where Yk1k2,i is defined as I(Yi = k1)/πk1 − I(Yi = k2)/πk2 .

Information criteria,

AIC = log Q̂k1k2 + 2× n−1
k1k2
|M̂k1k2 |,

BIC = log Q̂k1k2 + log nk1k2 × n−1
k1k2
|M̂k1k2 |,

EBIC = log Q̂k1k2 + (log nk1k2 + 2 log p)× n−1
k1k2
|M̂k1k2 |.
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Simulation Study: 4 Models

1 2 3 · · · K − 1 K K + 1 · · · p

1 µ 0 0 · · · 0 0 0 · · · 0

2 0 µ 0 · · · 0 0 0 · · · 0

3 0 0 µ · · · 0 0 0 · · · 0
...

K − 1 0 0 0 · · · µ 0 0 · · · 0

K 0 0 0 · · · 0 µ 0 · · · 0

Remark: Mk1k2 = {k1, k2} and |Mk1k2 | = 2.
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Example 1. (Independent Covariance Structure) Generate

Yi ∈ {1, · · · ,K} according to P(Yi = k) = 1/K . Given Yi = k ,

Xi is generated from a multivariate normal distribution with

E(Xi |Yi = k) = µk , where µk = (µk1, · · · , µkp)> ∈ Rp is a

p-dimensional vector with µkk = µ but µk1k2 = 0 for any k1 6= k2.

Furthermore, the conditional covariance is given by

cov(Xi |Yi = k) = Σ = Ip, where Ip is a p × p identity matrix. It is

easily verified thatMk1k2 = {k1, k2}, and thus

MT =
⋃
Mk1k2 = {j : 1 ≤ j ≤ K}.
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Example 2. (Autoregressive Covariance Structure) The data

are generated in a similar manner as Example 1 but with two

differences. The first difference is that Σ is set to

σj1j2 = 0.5|j1−j2|. Note that Σ−1 = (ωj1j2) ∈ Rp×p is very sparse

with ω11 = ωpp = 4/3, ωjj = 5/3 for 1 < j < p,

ωj(j+1) = ω(j+1)j = −2/3 for 1 ≤ j < p, and ωj1j2 = 0 whenever

|j1− j2| > 1. The second difference is that the mean vector µk is

set be µk = µΣ(k), where Σ(k) stands for the k th column vector

of Σ. Accordingly, it follows thatMk1k2 = {k1, k2} with

MT =
⋃
Mk1k2 = {j ,1 ≤ j ≤ K}.
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Example 3. (Compound Symmetric Covariance Structure) The

data are generated in a similar manner as in Example 1.

However, the covariance is changed to

σj1j2 = 0.5 + 0.5I(j1 = j2), which is a compound symmetric

structure with diagonal components being 1 but all others being

0.5. One can verify thatMk1k2 = {k1, k2} with

MT = {j : 1 ≤ j ≤ K}. Furthermore, we know that the largest

eigenvalue of Σ is λmax(Σ) = 0.5(p + 1) while the smallest is

λmin(Σ) = 0.5. Consequently, the technical condition (C3) is

seriously violated. It is then of great interest to examine how

the proposed procedure is sensitive to this violation.
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Example 4. (Normality Assumption) Yi ∈ {1, · · · ,K} is

generated according to P(Yi = k) = 1/K . Given Yi = k , we

then generate the predictors as Xi = µk I(Yi = k) + Zi , where

µk = (µk1, · · · , µkp)> ∈ Rp with µkk = µ but µk1k2 = 0 for every

k1 6= k2. Furthermore, the random vector Zi ∈ Rp is generated

as Zi = (Zi1, · · · ,Zip)> ∈ Rp with each Zij independently

simulated from a centralized standard exponential distribution,

that is exp(1)− 1. Once again, we haveMk1k2 = {k1, k2} and

MT = {j : 1 ≤ j ≤ K}.
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Simulation Study: Results
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Real Example: Handwritten Chinese Characters

Figure: The Ten Handwritten Characters used for Real Data Analysis
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Table: Detailed Results for the Real Example

Total No. of

Method MS MMS selected features CA(%)

AIC 19.6 30.0 222.9 70.4

BIC 7.5 26.8 112.8 67.2

EBIC 1.3 3.4 32.2 58.4

NM 625 625 625 46.1
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Concluding Remarks

Pairwise Feature Screening

Strong Screening Consistency Property

Future Study
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