

Effects of Different Normalization Methods on Gene Set Enrichment Analysis (GSEA)

Ming Zhao Tutor: Dr. Mengjin Zhu

12th, Nov, 2011

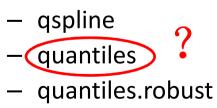
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education HZAU

Outline

- Introduction
 - Normalizations under R/Bioconductor environment
 - Comparison of differentially expressed genes and gene set tests
 - An introduction to Gene Set Enrichment Analysis(GSEA)
 - Normalizations and GSEA
- Results
- Detection rate of different normalization methods
- Correlations among different studies base on DEGs
- Discussion

Introduction

Normalizations under R/Bioconductor environment


- Most Extensive and Flexible Environment
 - Oligonucleotide & cDNA Arrays
 - Multiple methods for
 - Background correction
 - Probe-specific correction
 - Normalization over multiple chips
- Open Source
- Best Platform for Development
- FREE!

Normalize Method Options

- Background
 - Basics of Affymetrics Chip Design
 - Need to correct for Background Noise
 - Need for Normalization
- > normalize methods
 - constant
 - contrasts
 - invariantset
 - loess

Comparison of Differentially Expressed Genes and Gene-set Tests

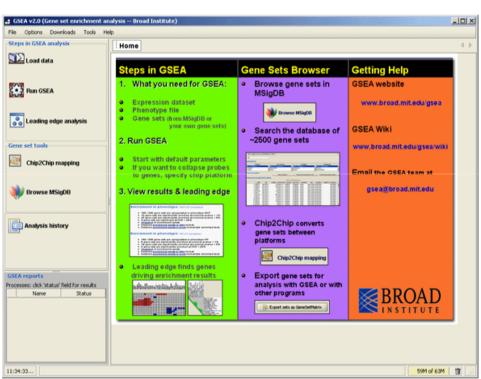
- In order to allow direct array-to-array comparisons, normalization is a prerequisite
- Comparison of differently expressed genes(DEGs) by various normalization methods
- On Gene-sets?

An introduction to Gene Set Enrichment Analysis(GSEA)

Molecular Profile Data	Run GSEA	Enriched Sets
Gene Set Database	GSEA	40 brone 400

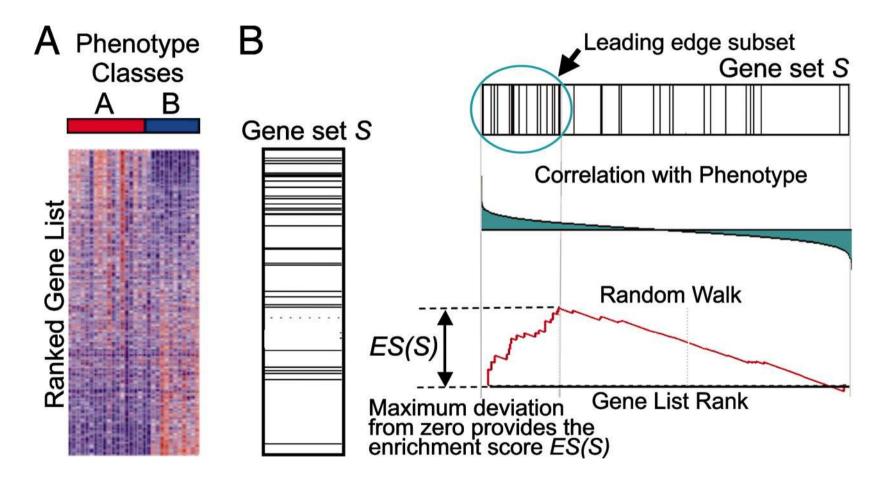
http://www.broadinstitute.org/gsea/index.jsp

- Two platforms GSEA-P and GSEA-P-R
- Prepare your data files:


Expression dataset file (res, gct, pcl, or txt)

Phenotype labels file (cls) Gene sets file (gmx or gmt) Chip (array) annotation file (chip)

How to Use GSEA-P


http://www.broadinstitute.org/gsea/index.jsp

- Load your data files into GSEA
- Set the analysis parameters and run the analysis
- Run a Leading Edge Analysis
- View the analysis results

A GSEA overview illustrating the method

Subramanian A et al. PNAS 2005;102:15545-15550

Why We Focus On GSEA

- Single-gene analysis has limitation
- No individual gene meet the threshold for statistical significance
- One may be left with a long list of statistically significant genes without any unified biological theme
- Single-gene analysis may miss important effects on pathways
- The lists of statistically significant genes from the two studies may show little overlap
- GSEA can address these analytical obstacles
- Chip gradually becomes an common tool

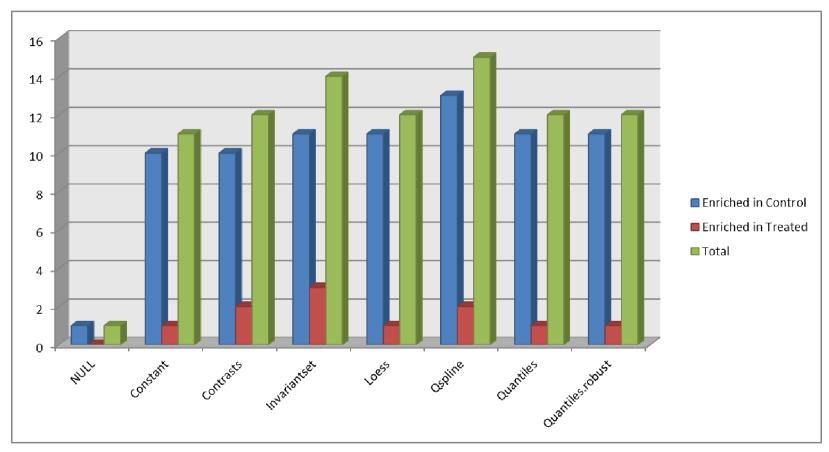
Normalization and GSEA

- The GSEA algorithm expects different levels of expression and provides better results when given all of the data
- When we get the expression files, we'd better ignores Present/Marginal/Absent calls and do not filter the data
- Consequently, the method for normalization becomes very important

Results

- Experiment design
- Six samples, three for control and three for treated
- Expression dataset file (gct)
- RMA background correct, PMONLY pmcorrect
- Then 7 normalize method
- Phenotype labels file (cls)
- Control VS treated
- Gene sets file (gmt)
- 62 immune pathways
- Chip (array) annotation file (chip)
 - Affymetrix Porcine Genome Array
- GSEA-P or GSEA-P-R

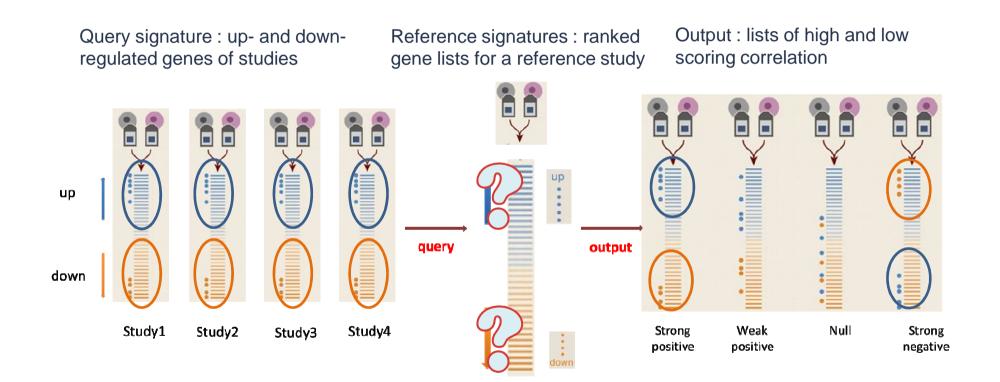
Significance of Up-regulated pathways in treated


Methods	Gene set	Source	Size	ES	NES	NOM p-val	FDR q-val
NULL	Non	Non	Non	Non	Non	Non	Non
Constant	TRAF6 mediated NF-KB activation	Reactome	24	0.53	1.74	0.004	0.049
Contrasts	Advanced glycosylation endproduct receptor signaling	Reactome	18	0.66	1.92	0.000	0.011
	TRAF6 mediated NF-KB activation	Reactome	24	0.54	1.71	0.013	0.041
Invariantset	Advanced glycosylation endproduct receptor signaling	Reactome	18	0.68	1.74	0.001	0.033
	Complement and coagulation cascades	KEGG	80	0.49	1.7	0.000	0.027
	Complement cascade	Reactome	22	0.6	1.63	0.013	0.043
Loess	Advanced glycosylation endproduct receptor signaling	Reactome	18	0.64	1.89	0.000	0.019
Qspline	Advanced glycosylation endproduct receptor signaling	Reactome	18	0.69	1.92	0.000	0.007
	TRAF6 mediated NF-KB activation	Reactome	24	0.58	1.74	0.007	0.047
Quantiles	Advanced glycosylation endproduct receptor signaling	Reactome	18	0.7	1.84	0.004	0.018
Quantiles.robust	Advanced glycosylation endproduct receptor signaling	Reactome	18	0.7	1.85	0.000	0.017

Entries of all sets with nominal p value \leq 0.05, false discovery rate (FDR) \leq 0.05. ES, enrichment score; NES, normalized enrichment score

Detection Rate of Different Normalization Method

The abscissa on behalf of different normalization methods, the ordinate represent the number of significant pathways

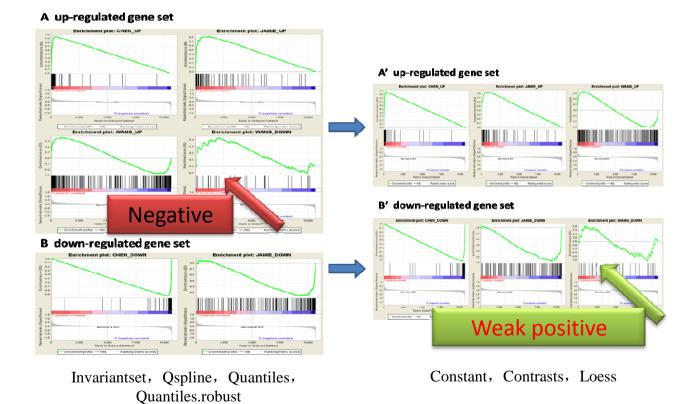

Connectivity Map Based on DGEs

- Comparison of correlations among different studies by GSEA
- Considering up and down regulated DGEs as a gene-set
- Quantify how well the up (and down) regulated genes rank in the ordered list
- How to ?

Connectivity Map

Connective Score of Published Studies

GESA analysis of published transcriptomes with our data by quantiles


Gene set	SIZE	ES	NES	NOM p-val	FDR q-val	CS	
CHEN_UP	124	0.95	3.780	0.00	0.00	0.945	
CHEN_DOWN	89	-0.94	-3.550	0.00	0.00		
JAMIE_UP	83	0.82	3.000	0.00	0.00	0.69	
JAMIE_DOWN	146	-0.56	-2.300	0.00	0.00		
WANG_UP	229	0.37	1.570	0.00	0.008	0.405	
WANG_DOWN	31	0.44	1.33	0.124	0.059		

ES: Enrichment Score; NES: Normalized Enrichment Score; FDR: False Discovery Rate

Correlations among Different Studies Base on DEGs

Summary

- In our study, we compared the effect of different normalization method from the aspect of detection rate and connection map
- Detection rate: invariantset ,qspline
- **GSEA connecting map**: invariantset ,qspline quantiles,quantiles.robust
- Quantiles?

Discussion

- A more reliable data set:
- More duplicates (affymetrix spike-in data ?)
- Reasonable experiment design (typical pathway variation)
- An appropriate normalization procedure ?
- On which level should the normalization be performed
- How to actually perform the normalization

Enlightenments

- How to keep the constant competence against novel sequencing technologies?
- We need more feasible tools to dig out more information in mass chip data
- Biological background challenges the most
- R is the optimal tool

Thank you!

Questions?

zhaoming159753@gmail.com

