Market Segmentation with Latent Class Regression

Applications of the package “FlexMix”

November 14, 2010 @ Shanghai University of Finance and Economics
Segment and Segmentation

- A **segment** is a group of end-users that share a unique set of wants/needs and/or purchase behaviors.
- **Segmentation** is the process that companies use to divide large heterogeneous markets into small markets that can be reached more efficiently and effectively with products and services that match their unique needs.
Segmentation Bases

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>Product-specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable</td>
<td>Cultural, geographic, demographic and socio-economic variables</td>
<td>User status, usage frequency, store loyalty and patronage, situations</td>
</tr>
<tr>
<td>Unobservable</td>
<td>Psychographics, values, personality and life-style</td>
<td>Psychographics, benefits, perceptions, elasticities, attributes, preferences, intention</td>
</tr>
</tbody>
</table>

Pricing Segments

Brand Loyals

Deal Prone
Advertising Segments

Response to Ad 1
Response to Ad 2

Segment A
Segment B
Segmentation Methods

<table>
<thead>
<tr>
<th></th>
<th>a priori</th>
<th>Post hoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive</td>
<td>Contingency tables, Log-linear models</td>
<td>Clustering methods: Nonoverlapping, overlapping, Fuzzy techniques, ANN, mixture models</td>
</tr>
<tr>
<td>Predictive</td>
<td>Cross-tabulation, Regression, logit and Discriminant analysis</td>
<td>AID, CART, Clusterwise regression, ANN, mixture models</td>
</tr>
</tbody>
</table>
Segmentation: Distance?

- Segmentation is the process of clustering consumers on basis of distances between them?
Segmentation with Cause-Effect Relation

Aggregate (100%): $Loyal = -2.46 + 1.06 \times Satisfaction$
Segment A (25.22%): $Loyal = 1.65 + 0.77 \times Satisfaction$
Segment B (48.38%): $Loyal = -4.25 + 1.33 \times Satisfaction$
Segment C (26.40%): $Loyal = 0.17 + 0.33 \times Satisfaction$

王霞, 赵平, 王高, 刘佳 (2005)
Multiple Correspondence Analysis

Segment A
- Senior high school
- Modest income
- 40 < Age < 50

Segment B
- Primary school or junior high school
- Lowest income
- Age > 50

Segment C
- College or above
- Average or high income
- Age < 30

王霞, 赵平, 王高, 刘佳 (2005)
Relationship for Segment Targeting

Descriptor Variables

Identifying the Particular Members of a Segment

Behavioral Variables

The Aspects of a Segment that Define Marketers’ Efforts

The Key to Targeting a Segment
Latent Class Regression

- Clusterwise / (finite) mixture regression
 - Consider finite mixture models with K components of form
 \[
 h(y \mid x, \psi) = \sum_{k=1}^{K} \pi_k f(y \mid x, \theta_k)
 \] (1)
 - $\pi_k \geq 0$, $\sum_{k=1}^{K} \pi_k = 1$

 - where y is a (possibly multivariate) dependent variable with conditional density h, x is a vector of independent variables, π_k is the prior probability of component k, θ_k is the component specific parameter vector for the density function f, and $\psi = (\pi_1, \ldots, \pi_K, \theta'_1, \ldots, \theta'_K)'$ is the vector of all parameters
Latent Class Regression

- If f is a univariate normal density with component-specific mean $\beta'k x$ and variance σ_k^2, we have $\theta_k = (\beta'_k, \sigma_k^2)$ and Equation (1) describes a mixture of standard linear regression models.
- If f is a member of the exponential family, we get a mixture of generalized linear models.
Posterior Probability

- The posterior probability that observation \((x, y)\) belongs to class \(j\) is given by

\[
P(j | x, y, \psi) = \frac{\pi_i f(y | x, \theta_j)}{\sum_k \pi_k f(y | x, \theta_k)}
\]

- The posterior probabilities can be used to segment data by assigning each observation to the class with maximum posterior probability

- Individual-level predictions of finite mixture models are a weighted combination of the segment-level regression functions, weighted with the posterior membership probabilities (DeSarbo, Kamakura, and Wedel 2006)
Parameter Estimation

- The log-likelihood of a sample of \(N \) observations \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \) is given by

\[
\log L = \sum_{n=1}^{N} \log h(y_n | x_n, \psi) = \sum_{k=1}^{K} \log(\sum_{k=1}^{K} \pi_k f(y_n | x_n, \theta_k))
\]

- The most popular method for maximum likelihood estimation of the parameter vector \(\psi \) is the iterative EM algorithm (Leisch 2004)
Using FlexMix

• As a simple example we use artificial data with two latent classes of size 100 each:
 - Class 1: $y = 5x + \epsilon$
 - Class 2: $y = 15 + 10x - x^2 + \epsilon$
 - with $\epsilon \sim N(0, 9)$ and prior class probabilities $\pi_1 = \pi_2 = 0.5$

• We can fit this model in R using the commands

```r
> library(flexmix)
> data(NPreg)
> m1 = flexmix(yn ~ x + I(x^2), data = NPreg, k = 2)
> m1
```

Leisch (2004)
Call:
\texttt{flexmix(formula = yn \sim x + I(x^2), data = NPreg, k = 2)}
Cluster sizes:
\begin{tabular}{ll}
1 & 2 \\
100 & 100
\end{tabular}
convergence after 15 iterations
\texttt{> parameters(m1, component = 1)}
\texttt{coef}
\begin{tabular}{cccc}
(Intercept) & x & I(x^2) \\
-0.20989331 & 4.81782414 & 0.03615728
\end{tabular}
\texttt{sigma}
\texttt{[1] 3.47636}
\texttt{> parameters(m1, component = 2)}
\texttt{coef}
\begin{tabular}{cccc}
(Intercept) & x & I(x^2) \\
14.7168295 & 9.8466698 & -0.9683534
\end{tabular}
\texttt{sigma}
\texttt{[1] 3.479809}
\texttt{Leisch (2004)
Using FlexMix

> summary(m1)
Call:
flexmix(formula = yn ~ x + I(x^2), data = NPreg, k = 2)

prior size post>0 ratio
Comp.1 0.494 100 145 0.690
Comp.2 0.506 100 141 0.709
`log Lik.' -642.5453 (df=9)
AIC: 1303.091 BIC: 1332.775
> table(NPreg$class, m1@cluster)
 1 2
1 95 5
2 5 95

Leisch (2004)
Significance Test

```r
> rml1 = refit(m1)
> summary(rml1)
```

Call:

```r
refit(m1)
```

Component 1:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | -0.208996| 0.673900 | -0.3101 | 0.7568 |
| x | 4.817015 | 0.327447 | 14.7108 | <2e-16 |
| I(x^2) | 0.036233 | 0.032545 | 1.1133 | 0.2669 |

Component 2:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|-------------|--------------|
| (Intercept) | 14.717541| 0.890843 | 16.521 | < 2.2e-16 |
| x | 9.846148 | 0.390385 | 25.222 | < 2.2e-16 |
| I(x^2) | -0.968304| 0.036951 | -26.205 | < 2.2e-16 |
```

Leisch (2004)
Automated Model Search

- In real applications the number of components is unknown and has to be estimated
- Fit models with an increasing number of components and compare them using AIC or BIC

```r
> m7 = stepFlexmix(yp ~ x + I(x^2), data = NPreg,
control = list(verbose = 0), K = 1:5, nrep = 5)
> sapply(m7, BIC)
 1 2 3 4 5
946.7477 925.9972 942.1553 960.0626 960.9347
```

- Choose the number of components minimizing the BIC

Leisch (2004)
Finite Mixtures with Concomitant Variables

- If the weights depend on further variables, these are referred to as concomitant variables.
- The model class is given by

$$ h(y \mid x, \omega, \psi) = \sum_{k=1}^{K} \pi_k (\omega, \alpha) f_k (y \mid x, \theta_k) $$

  - Where $w$ denotes the concomitant variables, $\alpha$ are the parameters of the concomitant variable model.

$$ \sum_{k=1}^{K} \pi_k (\omega, \alpha) = 1 \quad \pi_k (\omega, \alpha) > 0, \forall k $$

Grün and Leisch (2008)
## Segmenting Newspaper Readers

<table>
<thead>
<tr>
<th>变量类型</th>
<th>变量名称</th>
<th>细分市场1</th>
<th></th>
<th>细分市场2</th>
<th></th>
<th>细分市场3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>系数</td>
<td>T值</td>
<td>系数</td>
<td>T值</td>
<td>系数</td>
<td>T值</td>
</tr>
<tr>
<td>感知变量</td>
<td>截距</td>
<td>5.022*</td>
<td>5.454</td>
<td>0.621*</td>
<td>2.136</td>
<td>0.355</td>
<td>1.004</td>
</tr>
<tr>
<td></td>
<td>新闻栏目评价</td>
<td>-0.268</td>
<td>-1.5544</td>
<td>0.125*</td>
<td>2.051</td>
<td>0.418*</td>
<td>6.280</td>
</tr>
<tr>
<td></td>
<td>经济栏目评价</td>
<td>0.059</td>
<td>0.46541</td>
<td>0.074</td>
<td>1.471</td>
<td>0.052</td>
<td>1.117</td>
</tr>
<tr>
<td></td>
<td>娱乐栏目评价</td>
<td>0.069</td>
<td>0.468</td>
<td>0.074</td>
<td>1.542</td>
<td>0.040</td>
<td>0.717</td>
</tr>
<tr>
<td></td>
<td>北京栏目评价</td>
<td>0.270</td>
<td>1.845</td>
<td>-0.032</td>
<td>-0.703</td>
<td>0.137*</td>
<td>2.580</td>
</tr>
<tr>
<td></td>
<td>版面设计评价</td>
<td>0.360*</td>
<td>2.071</td>
<td>0.060</td>
<td>0.913</td>
<td>0.161*</td>
<td>2.556</td>
</tr>
<tr>
<td></td>
<td>印刷质量评价</td>
<td>-0.025</td>
<td>-0.178</td>
<td>0.002</td>
<td>0.043</td>
<td>0.188*</td>
<td>4.022</td>
</tr>
<tr>
<td></td>
<td>广告评价</td>
<td>0.153</td>
<td>1.385</td>
<td>0.077*</td>
<td>1.968</td>
<td>0.071</td>
<td>1.694</td>
</tr>
<tr>
<td></td>
<td>购买便利性评价</td>
<td>-0.402*</td>
<td>-3.103</td>
<td>0.198*</td>
<td>4.978</td>
<td>-0.109*</td>
<td>-2.842</td>
</tr>
<tr>
<td></td>
<td>感知价格</td>
<td>0.119</td>
<td>1.337</td>
<td>0.280*</td>
<td>9.170</td>
<td>-0.032</td>
<td>-0.991</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>样本量</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>119</td>
<td></td>
<td>495</td>
<td></td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>市场份额 (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.16</td>
<td></td>
<td>54.76</td>
<td></td>
<td>32.08</td>
</tr>
</tbody>
</table>

*Note:* The dependent variable is “Customer Satisfaction” (N= 904), *: p<0.05

王燕, 赵平 (2009)
<table>
<thead>
<tr>
<th>变量类型</th>
<th>变量名称</th>
<th>细分市场1</th>
<th>细分市场2</th>
<th>细分市场3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>系数</td>
<td>T值</td>
<td>系数</td>
</tr>
<tr>
<td>个人特征变量</td>
<td>截距</td>
<td>0.081</td>
<td>0.075</td>
<td>-0.578</td>
</tr>
<tr>
<td>阅读频率a</td>
<td>每天阅读</td>
<td>-0.069</td>
<td>-0.162</td>
<td>0.188</td>
</tr>
<tr>
<td></td>
<td>每次读报用时b</td>
<td>半小时以下</td>
<td>0.644</td>
<td>1.572</td>
</tr>
<tr>
<td>阅读地点c</td>
<td>家中</td>
<td>0.492</td>
<td>0.705</td>
<td>-0.966</td>
</tr>
<tr>
<td></td>
<td>上班</td>
<td>0.125</td>
<td>0.193</td>
<td>-0.001</td>
</tr>
<tr>
<td>性别d</td>
<td>男</td>
<td>1.138*</td>
<td>2.796</td>
<td>0.643</td>
</tr>
<tr>
<td>教育程度e</td>
<td>高中及以下</td>
<td>1.016*</td>
<td>2.091</td>
<td>1.319*</td>
</tr>
<tr>
<td>年龄f</td>
<td>25岁以下</td>
<td>0.163</td>
<td>0.292</td>
<td>-0.772</td>
</tr>
<tr>
<td></td>
<td>25-35岁</td>
<td>-0.235</td>
<td>-0.344</td>
<td>0.542</td>
</tr>
<tr>
<td>家庭月收入g</td>
<td>2000-4000元</td>
<td>-1.689*</td>
<td>-3.055</td>
<td>-0.746</td>
</tr>
<tr>
<td></td>
<td>4000元以上</td>
<td>0.725</td>
<td>1.036</td>
<td>0.948</td>
</tr>
</tbody>
</table>
Recap

• The underlying basis of customer heterogeneity (i.e., discrete market segments) is unknown a priori
• The objective is to simultaneously estimate the number of market segments, their size and composition, and the segment specific regression coefficients
• Concomitant variable mixtures allow for demographic variables to explain segment membership simultaneously
• This class of methods enables marketers to engage in response-based segmentation, i.e., from descriptive to predictive segmentation
References (I)

References (II)

Q & A

- Your comments are appreciated