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Robustness Analysis

In statistical language, we treat the estimator θ̂ as a function of the
underlying distribution F ,i.e. θ̂(F ).

The contamination of the underlying distribution F is considered as a
small amount of mass ε concentrated at point y .

The contaminated distribution is Fε = εδy + (1− ε)F

Influence Function

IFθ̂(y ,F ) = limε→0
θ̂(Fε)− θ̂(F )

ε
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Robust Analysis: Mean and Quantile

Mean Estimator: IFθ̂(y ,F ) = y − θ̂(F )

Quantile Estimator:

IFθ̂(y ,F ) =
sgn(y − θ(F ))

f (F−1(τ))

For General Moment Estimators of mean, i.e.
θ̂ = argminθ(

∑
ψ(yi − θ))2,

IFθ̂(y ,F ) =
ψ(y − θ(F ))

Eψ′(y − θ(F ))
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From Quantiles to Quantile Regression

We have shown that Sample Quantiles is more robust than common
mean.Koenker(1978) extended the thinking to the regression analysis
literature. Thus came the Quantile Regression literature.

Model Form:
β̂(τ) = argmin

∑
ρτ (yi − xT

i β)

where the check function ρτ (u) = u(τ − 1(u < 0))

In R, the package quantreg provides estimation and testing for quantile
regression model.

The problem: Model Misspecification.
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Quantile Regression: Is Parametric Model Sufficient?
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Nonparametric Smoothing

Model misspecification problem is inevitble because they are only
convenient approximations but can not restore all the true trend functional
forms, especially when such forms are complex.

Nonparametric estimation was first used for kernel estimation for density
function.

f̂ (x) =
1

nh

∑
K (

xi − x

h
)

where K (·) is kernel function and h is the bandwidth

The Nadaraya-Watson Nonparametric Estimation:

mn(x) =

∑
yi · 1

hK ( xi−x
h )∑ 1

hK (( xi−x
h )
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Nonparametric Estimation as Moving Averages

The nonparametric regression is just a special type of moving average,
where kernel function offers a certain set of weights. We can see the
density estimation as a heauristic interpretation:
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From Nonparametric Mean to Nonparametric Quantile

For quantile estimation, first express the estimator in terms of minimizer of
conditional check function:

mτ (x) = argminθ∈ΘE{ρp(Y − θ) | X = x}

Therefore, we can have the local constant estimator:

m̂τ (x) = argmina

∑
i

ρp(Yi − a)K (
Xi − x

h
)

This can also be extended to estimate to local polynomial estimation:

minβ
∑

i

ρp(Yi −
r∑

j=0

βj(xi − x)j))K (
Xi − x

h
)
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Statistical Properties and Bandwidth Selection

The bandwidth is the key parameter that should be treated seriously.

Generally, large h means small variance, but large bias.

The selection of regression order r is also important. For fixed j , when
r − j is odd, the bias of β̂j is smaller. This is obtained by J. Fan,et
al.(1994) when considering the asymptotic normality under general
estimation functions.

The optimal bandwidth requires estimation of derivatives and is not very
convenient.
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Nonparametric Regression for Correlated Data

For dependent data, the aforementioned properties should be reconsidered.

Intuitively, the whitening by windowing principle by Hart(1996)
guarantees the consistency of estimators: Given two points xi and xj in the
design space, the random variable 1

hK ( xi−x
h ) and 1

hK ( xi−x
h ) is nearly

uncorrelated as h→ 0

But strict proof of consistency requires consideration of mixing
conditions. The most common one is α-mixing:

α(l) = maxk≥1supA⊂F k
1 ,B⊂F∞n+k

| P(A)P(B)− P(A ∩ B) |→ 0
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Nonparametric Quantile Regression: Example of Financial
Data

Here we consider 1500 daily returns of Hewlett-Packard. The data is
obtained from package fEcofin. The data shows classical features of
nonlinear time series: volatility clustering, assymetry, heavy tails.
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Nonparametric Quantile Regression V.S. GARCH Model

A GARCH model is fitted in comparison with a nonparametric local linear
estimation. An important message is that the two tails show different
volatile features. This information is missing in the GARCH model.
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Bandwidth Selection: Adaptive Algorithm

1 Initialization: Set s = 0. For each Xi , we consider a small initial
window ∆0(Xi ) = [Xi − h0,Xi + h0] for a small bandwidth h0.
Calculate
(â

(0)
i (Xi ), b̂

(0)
i (Xi )) =

argmina,b
∑

Xj∈∆0(Xi )
ρτ (Yj − a− b(Xj − Xi ))K (

Xj−Xi

h0
) and estimate

the variance V̂ar(â
(0)
i (Xi ))

2 Iteration: If s > kmax , with kmax the maximal iteration steps

tolerable, then stop and set m∗τ (Xi ) = a
(s−1)
i (Xi ).Else, denote

∆s(Xi ) = [Xi − hs ,Xi + hs ], with hs = hs−1 + h0 Calculate â
(s)
i (Xi )

and updateV̂ar(â
(s)
i (Xi )) similar to above.
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Adaptive Algorithm

1 Testing the homogeneity: If ∃l < s s.t.

| â(s)
i (Xi )− â

(l)
i (Xi ) |> η

√
V̂ar(â

(0)
i (Xi )), stop and settle down the

local linear estimator as m′′∗p (Xi ) = a
(s−1)
i (Xi ) Else set s = s + 1 and

return to 2.

This algorithm was proposed by M. Tian(2009) and can overcome curse of
dimensionality and notably, preserves high frequency information.

The consistency can also be proved under α-mixing conditions.
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Adaptive Algorithm Simulation:Doppler
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Adaptive Algorithm Simulation:Blocks
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Confidence Interval Inference: An Open Problem

Sometimes, we are interested in the confidence interval inference of a
perticular quantile, rather than the point estimation. Although we can rely
on the asymptotia for large sample data, for small sample the variance
estimator is very poor, and is still an open question.

One solution is to use the bootstrap method. Note the consistence of
bootstrap requires that the resampled distribution F ∗n converges to the
sample distribution Fn almost surely. Empirically, we can always assume it
is true, but strict proof is difficult to obtain.

For one sample data, a better CI method has been proposed, thanks to
Kaplan-Meier estimator.
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One-sample Quantile CI

For one-sample data, using Kaplan-Meier estimator, the statistics becomes
simple:

(ŜM(x)− τ)2

var(SM(x))
∼ χ2

1

The efficiency is due to the Greenwood Function of the Kaplan-Meier
estimator.

Intuitively, we may use
(x̂τ − xτ )2

var(x̂τ )
∼ χ2

1

In this case, the variance estimator is 1
4f̂ (F−1(τ))

, where the density

function need be estimated using kernel. In small sample, this leads to
very biased results.
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One-sample Censored Data Inference

The method adapts naturally to the censored data situation.
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One-sample Estimation: Further Application

The method draws confidence intervals that are very robust, see the table
below. indicating that it can possibly be adopted in related works,
including ratio estimation, induced information cencoring problem, etc.

n=30 τ
1− α 0.1 0.25 0.5 0.75 0.9

95% 0.927 0.943 0.949 0.946 0.979
90% 0.860 0.885 0.882 0.897 0.947
85% 0.804 0.833 0.832 0.836 0.898
80% 0.710 0.782 0.771 0.788 0.817
75% 0.653 0.727 0.713 0.729 0.763
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Conclusion

The presentation briefly discusses some robust analyis models, including
nonparametric smoothing, quantile regression, and one-sample quantile
estimation. In contradiction to a simple parametric model, these
computationally intensive methods can avoid our arrogance in
underestimating the real data structure. By applying such methods, we
can let the data talk all by itself to reveal its own unique qualities.

For its application in R, there are already many built-in packages,
including: kde, ks,(kernel smoothing) quantreg(quantile regression),
lowess(Huber regression), survival(Kaplan-Meier estimator). Such
packages offers quite fast algorithms and easy summarization. For some
new algorithms shown in this result, the simulation often exceeds R’s
computation capacity. Therefore, I suggest mastering a low level language
is still necessary for the research in this area.
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